
International Journal of Computer Trends and Technology Volume 67 Issue 2, 1-6, February 2019

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V67I2P101 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

SQLite Database and its Application on

Embedded Platform

Y.V. Sai Bharadwaj, Sai Bhageerath Yarrapatruni, Prasada Rao YVSSSV

School of Computer Science and Information Technology, University of Hyderabad

National Institute of Technology, Warangal

NRI Institute of Technology, Guntur, AP.

Abstract - SQLite is an embedded database system

popularly used in mobile devices, remote sensing,

control systems, information appliances, etc. It has

become the focal point for development works in

related areas. Reliability, robustness, security, fast and

high efficiency, flexibility, and so on are unique among

many other embedded databases. This paper outlines

the basic features, structure, and key technologies of

main embedded databases and analyses the

characteristics, architecture, and interface functions of

SQLite. Also, a detailed porting process from SQLite

to the ARM-Linux platform is discussed, and a

development case on the home gateway over ARM-

Linux is examined.

Keywords - Embedded Database; SQLite; Porting;

ARM-Linux; Home Gateway

I. INTRODUCTION

 With the advancement in information technology, a

new development space for embedded database

technology has opened up according to the

requirements of the mobile database system. With the

advancement of smart machines like Mobile Devices,

Information Appliances, etc., embedded database

technology has entered into the application domain

from its earlier research vertical. Numerous variants of

embedded systems and embedded database technology

are being worked on. Because of the overreach of

mobile devices, the demand for real-time data

processing and data management has become the need

of the hour. This demand has drawn an efficient

embedded database application into an accelerating

development phase.

Recently, many database products have appeared in

the international arena, such as SQL Server, Oracle,

IBM DB2, Sybase, etc. However, the embedded

systems' power utilization and memory consumption

restrict these products from their full potential,

especially when the volume of mobile users becomes

elephantine. The traditional databases utilize enormous

space and are much slower in real-time, while on the

other hand, embedded databases show exceptional

performance in the concerned vertical. Many

embedded databases have surfaced in both the

domestic and international markets, which has eased

the development of various embedded devices.

Domestic products include TinyDB, ZODB are

developed in python, and International products like

OracleLite of Oracle, DB2 and DB2 Satellite of IBM,

and Sybase iAnywhere of Sybase.

Embedded databases based on the Linux open-

source platform like Berkeley DB, Mysql, SQLite,

etc., that provide API's which are easy to use, aid the

management and access of data and encourage the

development of open-source software. Adding to the

emergence of research and application in some

verticals like mobile devices, Communication

Systems, Automatic Test Systems (ATS), etc., the

development of efficient embedded databases will

become further important.

In response to the requirement emerging in this

hot reached vertical, major database vendors have

developed their products (embedded databases). Each

has its technical specifications and characteristics.

Among these, SQLite has strongly attracted most

developers due to its lightweight, portability, no

copyright constraints, and so on.

II. FEATURES, FRAMEWORK,

ARCHITECTURE, AND THE KEY

TECHNOLOGIES OF EDS

A. Features of Embedded Database Systems

 The architecture defines an embedded database

system [1]. It is a DMS that supports mobile

computing, is integrated with specific Mobile

Application Software and embedded Operating

systems, and runs on an embedded or mobile device.

It is also known as an embedded mobile database as it

involves mobile computing. Embedded database

technology combines several fields like the real-time

system, mobile communication, database, distributed

computing, etc. This has developed into a new area of

research in database technology. The structure of an

Embedded System is shown in Fig.1.

Y.V. Sai Bharadwaj et al. / IJCTT, 67(2), 1-6, 2019

2

Fig. 1 Embedded System Framework

 An Embedded database, like middleware, is

bound to be restricted by various factors like speed,

application, and other resources. An Embedded

database system is very much similar to a traditional

database system, which can be a hierarchical,

network, relational, and object-oriented database. The

typical distinction between the embedded database

and a traditional database is that: an embedded

database is procedure-driven, whereas a traditional

database is response-driven (i.e., in an embedded

database, a respective API is called to access data,

while in a traditional database engine response

approach is used). An embedded database can't be

considered a small-scale traditional database, as an

embedded database system and a traditional database

system are not the same in the running environment

and have their characteristics [2][3][4].

(1) Less space and memory requirement

The scale of the data structure (such as data tables

and records) is limited, and less disk space is

consumed. The memory utilization of an

embedded system is also very little, so an

embedded database can run infinite memory

space.

(2) Reliability, robustness, and security

As an embedded database is generally used in a

mobile environment, reliability, data integrity, and

security are necessary.

(3) Interoperability and portability

Generally, an embedded database is specific to the

application platform and the operating system, so to

ensure hassle-free communication with other

databases, interoperability is of great concern in the

development process; at the same time, portability

plays a major role in an embedded database (as OS and

hardware platform used in various embedded systems

are different), which should be considered during the

design phase.

(4) Scalability

An embedded database must be scalable to reduce

disk space utilization.

B. The Architecture of EDS

 Similar to a traditional database, there are three

levels in an embedded DB: the internal level,

conceptual level, and external level [5], which is

shown in Fig.2.

Fig. 2 Architecture of Embedded database System

The conceptual level provided a logical illustration

of DB. The external level is an interface between the

database system and users. Based on the structure of

the external level, programmers store and operate data

and are not concerned with the logical illustration.

The internal (memory) level defines the physical

structure like the data types, indexes, methods of data

control, and so on. The conceptual level is a

middleware and restricts both the external and

internal levels.

Based on the need for Real-Time, the conceptual

level can be bypassed (if real-time demand is high)

and directly deal with the physical data at the internal

(memory) level.

Embedded Database Management System is a

software system that manages the data in the

embedded database system. It consists of three

program modules: the language compiler processing

programs, the system running control program, and

the service program. All the operations on embedded

DB are executed through the Embedded DBMS. The

three modules are described here [5]:

(1) Language compiler processing program: It

includes language processing and compiler

processing of DML at all levels.

(2) The system control program: It is used to

control the processes in the program that include real-

time scheduling, data access, control and storage into

the database, concurrent control program, etc.

(3) Service-oriented program: It included the

error recovery process, DB organization process, etc.

C. The Key Technologies of EDS

 The design of an embedded database is balanced

with the application system (Front end) and the data,

which is a sub-set of the dataset (in the back end

server). So, for a robust, reliable, and secured

embedded database, various key technologies must be

considered during the design phase [6].

(1) Replication and Synchronization

Data replication is employed when mapping

with the DB at the back end server to access data at

any time. This replication of data necessitates

synchronization between front-end applications and

backend servers.

Y.V. Sai Bharadwaj et al. / IJCTT, 67(2), 1-6, 2019

3

(2) Backup recovery

The backup process in an embedded DB is

different than that of a usual DB. It follows the

procedure and is not independent of the service.

(3) Transaction processing

Processing of transactions in an embedded DBS is

rationalized in the front-end. As accessing required

data does not necessitate hitting the backend DB every

time, this helps reduce the number of hits onto the

backend server, saves time, and improves

performance. But the entire application system may

need to be combined with the characteristics of a

mobile computing environment to control and deal

with transactions.

(4) Security

Granting access control is the utmost need for

embedded devices that is highly portable and mobile.

The database system is precise with authority access.

(5) Quick start-up of the system

There is a greater risk of fault occurrence in an

embedded system, so a Quick start-up is ensured to list

every process running; this helps in the case of non-

correction of Software Error.

(6) Real-time processing

To avoid processing delay, real-time processing is

to be employed, and this forms the backbone

requirement of an embedded system.

III. DATA STRUCTURES, ARCHITECTURE OF

SQLITE, AND ITS API FUNCTIONALITIES

A. Features and Data Structure of SQLite

1. Features of SQLite

 SQLite is an open-source light-weighted DB. It is

written in C language. Compared to the traditional

databases like Oracle, SQL Server, etc., SQLite does

not require additional components (as it encompasses a

complete embedded DB engine). It is suited for

embedded application development and possesses

many benefits; and hence it is preferred over many

other embedded DB systems in the research and

development domain. The main features are as follows

[7][8][9]:

(1) The open library of this embedded DB is

implemented in not more than 30,000 lines of C code.

In addition to this, its DB is compatible with binary

formats and scales up to 2 terabytes in size. As this is

open-sourced, it minimizes the production costs.

(2) Autoconfiguration and execution is an

enabling feature of SQLite, as it does not require any

thread to start and stop. Neither does it require

creating DB nor distributing access authority by the

admin. At the time of system collapse, the restoration

process involved in SQLite is automatic. Also, it

provides an easy-to-use API and accesses the DB

directly through API functions. It also supports

advanced languages.

(3) SQLite can directly access the database files

on the hard disk without calling an additional service.

Interoperability enables the use of the same database

files on different machines.

(4) SQLite does not differentiate data type, i.e.,

it can assign any data to any column of any table, no

matter how the data is declared on the hard disk.

(5) SQLite enforces ACID properties and does

not leave the system vulnerable during the unplanned

collapse.

(6) SQLite is quick, scalable, and with high

throughput. As it is platform-independent, it can be

used on various embedded OS, like uC Linux,

Windows CE, etc.

(7) It supports major programming languages,

including C/C++, PHP, Perl, etc. These languages

interact with the DB using an API call.

(8) SQLite employees more than 90% test

coverage (i.e., test cases covering the complete

application code).

2. Data Structure of SQLite

 SQLite has several data structures to use in the

design of the program. They are as follows:

(1) In the program design, SQLite * XXX

defines a data structure pointing to a DB. SQLite is

a data structure pointing to a database.

(2) In the program design, sqlite_stmt *XXX

defines a handle pointing to some SQL statements.

Sqlite_stmt is a data structure that includes byte

codes compiled by SQL statements and all the

necessary resources which execute the byte codes.

(3) Sqlite_value is used to hold values of

dynamic data type.

B. Analysis of SQLite Architecture

1. SQLite Architecture

 Modular design is facilitated for up-

gradations, and the complete DB is divided into

several modules. The 8 primary subsystems are

depicted in Fig 3[8]. The architecture of SQLite

constitutes three parts: Core, SQL Compiler, and

BackendBackend. In addition to this, Accessories

are also included.

Fig. 3 SQLite Architecture

Y.V. Sai Bharadwaj et al. / IJCTT, 67(2), 1-6, 2019

4

 The topmost level of SQLite interface is

implemented in the ANSI C library; even though

API's in different languages are used, the C library

is executed at the bottom. The received SQL

statements from the interface are decomposed into

various identifiers by the tokenizer. Then the parser

(lemon analyzer) recomposes the identifiers and

inputs the result to the code generator to produce

VM code. The VM carries the VM code and finally

completes the task of the SQL statement.

SQL command processor has three independent

components: Tokenizer, Parser, and Code Generator.

The interface transfers these strings containing SQL

statements to the tokenizer. The tokenizer's job is to

break the original string up into tokens and pass these

broken tokens one by one to the parser. The

Tokenizer and Parser transform the SQL statements

into data structures handled at the bottom layer. The

parser generator produces a parse tree by recombining

the tokens and transferring the parse tree to the code

generator.

VM is the most important component of the

internal structure of SQLite, which is called the

Virtual Database Engine (VDBE), which is an engine

designed to deal with library files. It performs

operations like data manipulation and acts as an

interface between the client and backend storage.

VDBE instructions are designated to complete

various database operations, like insertion, deletion,

querying, transaction processing, etc. [9]. It can also

perform stack operations. The instruction sets of

Virtual Database Engine analyze any SQL statement,

first transforms it into corresponding virtual machine

statements, and then complete the tasks given by the

SQL statements.

The sole work of the Code generator is to convert

the parse tree into assembly language and then

transfer it to the virtual machine for execution.

The Virtual Database Engine executes the series

of instructions of the mini-program (In assembly

code) one by one and fulfills the request as specified

in the SQL statement.

BackendBackend includes three parts, as depicted

in Fig.3 [10][11]. The role of the B-tree and pager is

to transfer the data blocks to the OS interface. B-tree

is tasked to order the data blocks to ensure the

relation among the data pages is easy to locate. The

data blocks are stored in the form of B-Tree in the

discs. The task of the pager is for data management,

collapse recovery, etc.; this requires collaboration

with the OS interface.

OS interface provides a unified interface for porting

onto OS. As different OS use different methods to lock

files, the task of OSI is to shield out these differences

and provide an abstract layer for the other components

of SQLite.

The architecture of SQLite, as depicted in Fig 3,

also includes Accessories, namely Utilities and Test

code.

Utilities mainly perform no data type string

comparison, allocate memory, LEX functions, symbol

table storage, functionalities of printing, and the

random number function of SQLite.

Test Code: More than half of SQLite functions can

be tested if regression testing is counted on. The fault

recovery mechanism is simulated during the system

recovery using os_test.c.

2. SQL statement Execution using SQLite

 SQLite is used to implement SQL statements;

this process involves three stages: Prepare, Step and

Finalize, which is shown in Fig.4.

Fig. 4 SQL statement Execution Flow

(1) Preparation stage: Virtual Database Engine

byte code is formed by compiling the SQL statements

using the parser, tokenizer, and code generator in the

API function written in C. The compiler associates

with the sqlite_prepare() function and generates

sqlite_stmt. sqlite_stmt includes Byte code, all the

necessary resources required by executing SQL

statements, etc.

(2) Execution stage: Virtual DB Engine

implements the Byte-codes included in the

sqlite_stmt step-by-step. This step-by-step process is

completed by the sqlite_step().

(3) Finalization stage: The execution of the SQL

statement is still under process by the Virtual DB

Engine. Resources are released during this time.

sqlite_finalize() determines this process.

As shown in the above diagram, prepared, active,

and finalized represent the three stages of the

implementation. They imply the following: prepared

means the Virtual DB Engine Byte Codes are

prepared by compiling all the SQL statements. Active

means that the obtained Byte Codes are executed step

by step using the sqlite_step() function. Finalized

means that all the related resources are released after

the end of the execution process.

C. SQLite API Functionalities

 SQLite uses many API functions, which perform

various basic functions on the database; these are

used for the establishment of the table, querying,

Y.V. Sai Bharadwaj et al. / IJCTT, 67(2), 1-6, 2019

5

modification, insertion, deletion, sorting, etc. The

core functions of API are four [12] which are listed

herewith: sqlite_open (), sqlite_exec (), sqlite_close

(), and sqlite_errcode(), which are used to execute

SQL and acquire data, and realize efficient data

storage and management. In addition, it is extensible,

allowing the programmers to custom functions and

pass them on in the form of Callback.

sqlite_open(): This establishes the SQLite engine,

where access mode and filename are provided. Then a

callback function is implemented by SQLite for each

record from the DB.

sqlite_exec(): This deals with the result fetched after

executing the SQL statement.

sqlite_close (): This function closes the DB files and

releases the SQLite engine. The following

descriptions are the composition of four API

functions.

(1) Sqlite_open ():

This function is used to open the database and

establish the SQLite engine. There are various

standards for writing this function based on the UTF

(Unicode Transformation Format) used. In the case of

UTF-8 encoding format, we use:

intsqlite_open(const char *filename, sqlite3

**ppDb);

But for UTF-16 encoding format we use:

int sqlite3_open16 (const void *filename, sqlite3

**ppDb)

The parameters used are FILENAME (name of the

file) and PATH. For permission on access mode, we

use two additional parameters:

int sqlite3_open_v2 (const char *filename, sqlite3

**ppDb, int flags, const char *zVfs)

ACCESS MODE determines (Read-only/Read-

Write/Create). If the file exists, SQLite_OK is returned

by the OPEN function, and ppDb parameter returns a

legal database handle. If the file does not exist, it will

establish the DB connection with the SQLite engine,

and abnormal code is returned.

(2) Sqlite_close():

intsqlite_close (sqlite3 *db)

This function shuts down the already opened DB

connection with the SQLite engine. The db parameter

determines the handle of the DB being closed.

(3) Sqlite_exec ():

intsqlite_exec (sqlite * db,char*

sql,int(*Callback)(void*,int,char **,char**),void

*parg,char **errmsg);

SQL queries are dealt with this function which

includes five parameters: database structure pointer,

SQL statement string, the first pointer point to

Callback functions, the first parameter pointer of

Callback, and the pointer to error string.

(4)

intsqlite_errcode(sqlite*db):

This Error handling function returns the error code.

But for obtaining the error information we use:

const char * sqlite_errmsg(sqlite *); [for UTF-8]

const char * sqlite_errmsg16(sqlite *)[for UTF-16]

IV. PORTING EDS (SQLITE) ONTO ARM-

LINUX PLATFORM

Being an open-sourced platform and advantaged

with the lightweight feature, SQLite has been the

most widely used EDS. It operates on three levels:

external level, logic level, and internal (storage) level.

SQLite is ported onto the ARM-Linux platform to

make DB applications run on the ARM-Linux

platform (only then is application development

possible).

The porting of SQLite is possible and easy due to

its good characteristics, framework, and architecture.

And as SQLite is developed in the C language, it is

highly portable. For this, we perform cross-compiling

of the source code on various platforms. For porting

SQLite onto the ARM-Linux platform, corresponding

ARM-Linux tools are needed, and these tools are

installed in usr / local / arm-lnx / bin/path. The

bottom OS is the ARM-Linux, and porting is done

using 3 tools: arm-lnx-GCC, arm-lnx-ar, and arm-

lnxranlib. The specific course on porting is [12][13]:

(1) Use the command "echo PATH" to see if

arm-lnx-GCC has been included in the PATH.

(2) Download the source code package from

http://www.sqlite.org/, then decompress the package.

After the decompression process, the source code and

a few attached files are available in the un-zipped

SQLite directory.

(3) A few necessary docs are to be

edited/modified to ensure that SQLite runs on the

ARM-Linux platform. Rename Makefile. Linux-GCC

to Makefile, and then edit the files as below {

MODIFIED TO is denoted as [::-::] }

TOP = .. / sqlite[::-::]read: TOP =.;

TCC = gcc- O6 [::-::] read:TCC = armlnx-gcc-O6

;

 AR = ar cr [::-::] read: AR = arm-lnx-ar cr;

RANLIB = ranlib [::-::] read: RANLIB = arm- lnx

-ranlib ;

MKSHLIB = gcc-shared [::-::] read:MKSHLIB=

arm- lnx -gcc-shared.

Delete the tclsqlite.o output file in the program

file, as the TCL language binding with SQLite is

not supported on the ARM platform.

(4) Save all the modified files, and later run the

commands make install to generate SQLite.h,

libsqlite. Header files.

(5) Later, on the ARM-Linux platform, run the

SQLite; for this, copy it to the ARM board, and test a

program, and if the result is correct, it implies that

SQLite has been ported successfully onto the ARM

Y.V. Sai Bharadwaj et al. / IJCTT, 67(2), 1-6, 2019

6

platform. After this, application developments can be

carried on this platform using SQLite.

V. CONCLUSION

 With the rising demand for intelligent appliances,

the need for an embedded database has become the

focal point of study. SQLite is a C language library

and is open-sourced and contains a small core; DB is

a simple file; the DB files are easy to move and cross-

platform and are very suitable for building an EDS.

Due to its unique advantages, SQLite has become the

mainstream database in embedded systems.

In this paper, we have made a comprehensive

analysis of the basic features, framework,

architecture, and key technologies of EDS, and

discussed the key interface functions of SQLite, and

then the porting of SQLite to the ARM-Linux

platform was detailed; later discussed on the

application of SQLite in-home gateway using the API

provided by SQLite. With enormous advantages,

SQLite will have widespread use in fields like remote

control, intelligent appliances, home medical

equipment, etc.

REFERENCES
[1] Chunyue Bi et al., "Research and Application of SQLite

Embedded Database Technology," WSEAS

TRANSACTIONS on COMPUTERS, Issue 1, Volume 8,
January 2009, pp. 83-91.

[2] B. Schneier, A. Shostack. Breaking up is hard to do:

Modeling Security Threats for Smart Cards. USENIX
Symposium on Smart Cards, 1999.

[3] R. Munz: Usage Scenarios of DBMS, Keynote, 25th

International Conference on Very Large Data Bases,
Edinburgh, UK, 1999,

http://www.dcs.napier.ac.uk/~vldb99/Industrial

SpeakerSlides/SAPVLDB.pdf
[4] Jiang MF et al., "Discovering Structure from Document

Databases," Lecture Notes in Computer Science, vol 1574.

Springer
[5] Rick F, et al., Introduction to SQL: Mastering the Relational

Database Language, Addison Wesley, 2006.

[6] Hector.Garcia-Molina, et al., Database System
Implementation, Prentice-Hall, 2001.

[7] Mike Owens and Grant Allen, "The Definitive Guide to

SQLite," Apress 2nd edition, 2006.
[8] SQLite homepage [EB/OL], http://www.sqlite.org.

[9] Oracle Berkeley DB SQL API vs. SQLite API- Integration,

Benefits and Differences, Oracle White paper, Nov 2016, pp.
1-11.

[10] Mike Owens, Embedding SQL Database with SQLite, Linux

Journal, June 2003.

[11] P. Bohannon, D. Lieuwen, R. Rastogi, A. Silberschatz, S.

Seshadri, S. Sudarshan, "The Architecture of the Dalí Main-

Memory Storage Manager," Multimedia Tools and
Applications, vol. 4, no. 2, pp. 115-151, 1997.

[12] Michael A.Olson, Selecting and implementing an EDS, IEEE

Computer, 2000,33(7). 27-34.
[13] Ling-yun, Li-Jun, The Development and Application of

Script Program Based on SQLite, China Academic Journal
Electronic Publishing House, 1994-2008.

[14] Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2012-2017, Cisco, February 2013.
[15] Chaudhuri, S., Narasayya, V., “AutoAdmin „WhatIf‟ Index

Analysis Utility,” Proceedings of the ACM SIGMOD

Conference, Seattle, 1998.
[16] Rick F, van der Lans. Introduction to SQL: Mastering the

Relational Database Language, Addison Wesley, 2006.

